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Dynamics of a relativistic charged patrticle in a constant homogeneous magnetic field
and a transverse homogeneous rotating electric field
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The relativistic motion of a charged particle in a homogeneous time-independent magnetic field and a
transverse circularly polarized homogeneous electric field is reduced to an integrable form. Using canonical
transformations, it is shown that the equations of motion can be derived from a one degree of freedom
time-dependent Hamiltonian that has a first integral. The trajectories and the dynamics of the particle are
studied. Tractable approximate expressions for the maximum kinetic energy are derived in two situations of
experimental interesfS1063-651X%96)09411-]

PACS numbds): 41.75-i

I. INTRODUCTION effects of the spatial variations of the electromagnetic wave

field and the steady magnetic field. These studies were done

The charged particle motion in a constant homogeneout determine the maximum energy gain for a charged particle
magnetic field and a transverse electric field is studied. Thi# a section of waveguide or a cavity resonator immersed in

problem has already been explored by other authbes3]. @ steady magnetic field and an electromagnetic wave as a

Roberts and Buchsbauft] investigated the relativistic mo- function of the various parameters.

tion of a charged particle in the field of a homogeneous plane N this paper, the case of a circularly polarized standing
electromagnetic field. For the case when the index of refracave is considered in order to investigate effects similar to

tion is unity, they considered a charged particle that startdh0se that might occur in a cavity resonator in which a low-
from rest in the field of a circularly polarized plane wave density ionized gas has been created. One of the aims of this

whose frequency is equal to the rest mass cyclotron fre\_/vork is to bring some enlightenment to the discussions per-

auency €. They fond a *synchronous” souon n 197 0 he previous alces by g the amionin
which the particle gains energy indefinitely. This solution ' pie app

occurs because the particle gains ener arallel to, as wi essions for the maximum energy the particle can reach.

dicular t Ft)h di gt' p ayp i f :ch . This gives the upper limit in frequency of the x rays emitted
as perpendicular 1o, the direction ot propagation ol € CIry, hay” 51 glectron immersed in the considered electromag-
cularly polarized plane wave. The increase in perpendicul

dhetic wave hits a higlZ material target.
energy lowers the cyclotron frequency of the charged par- 1o energy of the charged particle is supposed to be low

ticle, while an increase in parallel energy changes the velocsnoygh so that dissipation due to radiation can be neglected.
ity of the particle, which results in a Doppler shift to a lower apg 5 consequence, the Hamiltonian formalism can be used.
frequency as “seen” by the particle. In this case, the Dop-  Two constants of motion are obtained simply by integrat-
pler shift to the lower frequency equals the reduction in theing the equations of Hamilton. Another constant of motion is
cyclotron frequency and the particle remains synchronouslylerived using Noether’s theorefd,5]. Canonical transfor-
in the cyclotron-resonance condition. Hakkenberg andmations permit one to reduce the problem to a time-
Weening[2] studied the relativistic equation of motion in a dependent problem with one degree of freedéin The sys-
constant homogeneous magnetic field and a homogeneotsm is shown to be integrable by two different methods. One
rotating electric field perpendicular to each other. By usingof them is peculiar to the Hamiltonian formalism; it can be
the Lorentz equation in the momentum space they have exshown that Liouville’'s theorem still applies in this case
pressed exactly the time dependence of the energy of a pd7—9|.
ticle in terms of elliptic integrals. The maximum energy  The Hamiltonian formalism gives some insight to the dis-
reached by the particle is calculated numerically for differentcussion concerning the numerically calculated trajectories
situations. So, in these two pap¢fs2], the integrability of  corresponding to different situations that are shown. It en-
the system is shown by using Lorentz equation as a forcables one to obtain for them a simple analytic approximate
equation. Jory and Trivelpieck8] have studied rather the expression that enables one to predict their aspect. For low
initial energies of the particle and low values of the electric
field the trajectory spirals outward and inward. When the
*Also at Laboratoire de Physique des Milieux lomiseEcole initial energy is high and the electric field low, the trajecto-
Polytechnique, Centre National de la Recherche Scientifique, 91128es become close to circles.
Palaiseau Cedex, France. An equation governing the energy of the charged particle
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FIG. 1. (a) Trajectory of a charged particle initially resonant and at (ggt-Qy=1) atX,=Y,=0 (initial values ofX andy) in the X-y
plane.a=3x10"3. (b) X component of the charged particle in the same conditions as thdak &f) ¥ component of the charged particle
in the same conditions as those(af.

is derived. It is shown that when the particle is initially at Bo Eo . R Bo Eo R
rest, its energy oscillates between two values. Simple ap- A=— 7Y+w— Sinwot | &+ 7X+w— COswot | & .
proximate expressions for the maximum kinetic energy of 0 0 ©

the particle are derived when the particle is initially either

resonant or “antiresonant(with the magnetic field in the Because of the Maxwell equations, the electric field and the
opposite direction The validity of the expression corre- total magnetic field cannot be constant alongzfexis. Still,
sponding to the first situation is discussed by a comparisofP! long wavelengths the additional magnetic field can be
with the maximum values of the energy obtained by SO|\,ingne_glected.|n aregion where the glectrlc field is maximum; in
numerically the exact energy equation. The importance ofliS domain the given treatment is exact. ,
taking the magnetic field in the right direction is emphasized. The motion of the charged particle is assumed to be in the
The condition for which a particle initially at rest reaches theX"Y Plane and its relativistic Hamiltonian expressed in mks
maximum possible energy is established. units is

ek . eB |\?,
Il. HAMILTONIAN STRUCTURE OF MOTION H=| | Pam =, Sinwot— 5=y ) ¢

AND TRAJECTORIES )

c?+m?c?

12

)

A. Research of constants of motion: Numerical resolution +
of Hamilton’s equations

The constant magnetic fieB,, is assumed to be along the where —e and m are the charge and the rest mass of the

ek e
Py+ —— coswgt + —— X
(O5) 2

z axis and the electric field has the components particle. The very different physical behavior of the nonrel-
_ ativistic motion is studied in the Appendix. The Hamilton
Ex=EoCoswot, Ey=Egsinwet, E,=0, (1) equations allows us to readily find two constants of motion
whereE, and w, are constants. The following gauge is cho- _ eBy _p _ eBy
sen for the electromagnetic field: Ci=Put 57y, Co=Py= 5 x @
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FIG. 2. (a) Trajectory of a particle in th&-y plane in a case when the particle is initiallysgt=Y,=0 and at resty,=1 andQy=1.2)
and when the resonance conditi@dy/y=1) is never reachedb) X component of the charged particle in the same conditions as thgak of
(c) Evolution of Qy/y versus time in the situation @#).

Another constant of motion can be obtained using Noether’'s ’
theorem[4,5], which says that if the Lagrangian is invariant Cl,a =1 9)
under the infinitesimal transformation

t—t+eg(t,r), This last property will be used to reduce the dimension of the
(5) problem by choosing these two constants as new conjugated
r—r+eu(t,r), momentum and coordinate.

The dimensionless variables and parameters are now in-
wheree is an infinitesimal, then a constant of motion is troduced

aL nn aL) ©) ” 3 P
—-u+|L-v-—]|g, x=x — Y=y —2 P,,=—Y i=
ov ov X=X c y=y o Pyy mc’ t=wot,
whereL=—mc?\1-v?/c?—eA-v is the Lagrangian and
the velocity of the charged particle. It is simple to show that . H ek, eB,
the _Lagranglan of the system is invariant under the transfor- H=vy= me’ a= MCwg’ Q :m_wo'
mation
t—ot—elwg, X—X+ey, y—y—eX. (7)  The new Hamiltonian is
Therefore, a third first integral is Q 2
ﬁ:[ P,—a sinf——oy)
C3=yPx—XPy+H/wy. (8) X 2

2
+1

1/2
It can be noticed that the first two constants are canoni-

, +
cally conjugated

. . Q.
Py+a cod+ — X

5 (10




5684

1.40 —-

1.20

0.80 -

(@

0.80 1.20

») or
=3

1.40

A. BOURDIER, M.

1.20

1.00

0.80

(b)

VALENTINI, AND J. VALAT

1.040

1.020

> 1.000 [

0.980

0.960

(2)

0.960 0.980 1.000 1.020

1.04

1.02 -

(» 1.00

0.98 -

200.0 300.0

t

0.0 100.0

400.0

0.96

1.040

—~ &

\/'u

0.0 10.0 200 300 400

50.0

1
60.0

FIG. 3. (a) Trajectory of a charged patrticle initially resonant and
at rest in thex-¥ plane.Xo=Y,=1 anda=3x10"3. (b) X compo-
nent of the charged particle in the same conditions as thoéa.of

FIG. 4. (a) Trajectory of a particle initially at rest and nonreso-
nant(Qy=1.2). The initial position is the same as in the case of Fig.
3(a). (b) X component of the charged particle in the same conditions
as those ofa).

The canonical equations are solved numerically using a

4(a), and 5 show different types of trajectories. When the

particle is initially at rest an@ small (a<<1), it spirals out- e = Qo A~ Qo

ward and inwardFigs. 1-4. Different conditions are con- X=X, y=y, P,=P,— >V Py=Py— - X 12
sidered. Two situations are always compared in each case.

The first is when a resonance conditiéa,=eBy/my or .

Q/y=1) is satisfied(Figs. 1 and 3and the second is when !N these variable€, andC, become

one is sufficiently far from any resonanc¢Eigs. 2 and % - ~ - ~ B

When the initial energy is high and the electric field is low C1=Py, Cy=Py—Q0x (13

enough, the trajectories become almost circles; Fig. 5 shows

such a trajectory in a case when the resonance condition Bhen_a_second canonical transformation is introduced:
never satisfied. Some analytical insight from an approximatéX.,y,Py.,Py)—(Q1,Q,,P1,P,), generated by

analytic solution of Hamilton’s equations will be given to

these numerical results in the following.

~ P
X+ =

Qo
B. Demonstration of the integrability of the problem

Let us show that this problem can be described from #nd yielding
single degree of freedom time-dependent Hamiltonian. A

first _ canonical _ transformation is introduced: ~_ ~ Py _ Py = =~
(%.9.Px.P,)—(X,y,Py,Py), given the type-2 generating = 0, YT oy Px=oQz,  Py=00Q:.
function [6] (15
~ Qo .\ =. The resulting transformation, which is a product of the two
Fa= ( Pxm 5 YXHRY. (D ransformations, is given by
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FIG. 5. Trajectory of an electron with a high initial energy in the y%,=Q¢=1 anda=3X 1073,
x-y plane(y,=4.57). Q=2 anda=3x10"3,

5 a+ anh-l- ath=0, (22
$=0.— 2
X=Q1 Oy’ where subscripts stand for partial derivatives. One can show
that a solution to Eq(22) is [7,8]
. Py
y=Q~ g, a=G(Qy1,1,H=[1p,(Q1,P1, D], (23
- (16)
Py=3(Q0Q,+Py), whereG,=0dG/dl andlp =dl/dP,. Then a second first in-
R tegral in terms of Q4,l,t) can be found for the one degree
Py=3(00Q;+Py). of freedom system. This integral has to satisfy
In these variables, the Hamiltonian is Jo,(Q1.1,H=Gy(Qy,1Lb),
(24)

- —asint)2+ n $)24 1142 R R R
HEHPmas™ (QoQuracod) LI (17 3(QuLH=G(Qu1DN(Qu 1D
As expectedP, and Q, are cyclic variables. The Hamil- )

tonian depends on time and has one degree of freedom. THategration leads to

new equations of Hamilton are

30,1 E) le dQ]/_
- Q - . 1 ~ (ELELY P — A
P1=—7O(QOQ1+aCOSt), le;(Pl_aSint). 0 lPl(Ql'Pl_G(Ql'I’t)’t)
(19 i Hp, (0;P1=G(0,,t');t")
—f 5 oy dt'. (29
The constan€; becomes o Ip,(0;P1=G(0Jl,t");t")
PZ O, ) Equation(25) shows thatQ; can be derived formally as a
I =H~- 20, 2 ~U (19 function of time. Consequently, our system is integrable.
Thus Liouville's theorem still hold$7,8] in the case of a
The formal inversion of with respect toP, provides one-dimensional time-dependent problem.
) Poincaremaps were performed, drawing one point each
P1=G(Q,l,1), (200 timet=0 mod2m) (Fig. 6) [6]. Many initial conditions were

tried. They always yielded smooth curves, which is in good

where G is the reciprocal function of. Introducing one  agreement with the fact that the system is integrable.
equation of the Hamilton, we get

leh(lelvf)l (21)

which can be considered as a first-order differential equation Introducing the variables
with parametei . In order to integrate Eq21), we look for _ R R
an integrating factor(Q,,1,t) satisfying the equation Q:=Q;+(alQg)cod, P;=P;—asint (26)

C. Solution of the equations of Hamilton as a function
of the particle energy: Approximate solution
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and the complex quantitz=P_1+iQOQ_l, the equations of
Hamilton[Eqgs.(18)] are equivalent to

iQoZ -
Z= —————a exQit),

V2P “

which is the equation of a nonlinear oscillator submitted to

an external force. The solution of this equation is

Z=Agexpi[o(t) + 5]—aft expi[o(t) — o(7)+ r]d,
0

(28)
with
U(E):QOJSdT y (7). (29
A, and § are real constants. Then
P,=Aqcod o(t) + 8] +a sint
—afot co§o(t)—o(7)+ 7]dr,
(30)

_AO_ Nis a “
Q1—9—03|r[cr(t)+ ]—Q—Ocost

- Qio Ot Sir{(r(f)—(r( )+ 7]dT.

The quantitiesA, and & are determined so that &0,
AG=75—1=Po+Pyo and tad=p,o/Pyo (p=p/mc andp

is the momentum of the partigleThe subscript 0 appended

to variablesy andp refers to their initial value.
Our numerical results show that, whenis small and
when v, is close to unity,y varies very little during a gyro-
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Ay . [Qp i s a R
Q1 Q_o sinf — - Q_o cod
_ Q)
2 S'r{(l_T) E} N
QO ( QO Sl Y 2 '
Y

This approximate solution can also be obtained by applying
the multiple-time-scale method to E@7) [10]. The number
of time variables is extended from one variabléo three
independent variables,=t, r;=¢t, and r,=¢%t, where
e=al(), is the small parametek is expanded irz accord-
ing to

2=7294zM+ge?2?, (32
We treatr,, 7, andr, as independent variables and expand
the time derivative as

a4_7 + ’ +¢g? i 33
E’E_O"TO 8(97’1 & 077'2. ( )

v is assumed to be a slowly varying quantity. One has to
suppose it is a function of, only. We find, forz(©),

Qo
Y(72) 7o

In order to have a uniformly valid solution f&®), we use
the freedom to remove any secular behavior to set

z20=7(, Tz)exp[ i . (34)

0z
o,

d T1 (3 5)

The solution correct to order can be written

o
expit)—exp i 5 ,

(36)

+

Qo
Z=Zjexpi —t

i Y
Y (y—Qp)

period (2my/Qy<1). It must be pointed out that consider- whereZ, is a complex constant. Settiizy=Aoexp(i 6), Eq.
ing a as a small quantity is experimentally realistic, espe-(36) leads to the derivation of Eq$31) again. This second

cially for low-Q cavities. In any casea is given by
a=(e/mc)(QP/w3eoV)Y? whereg, is the permittivity of
free spaceV is the volume of the cavity, anB is its power

way to derive Eqs(31) indicates how slow the variation of
must be so that the approximate solution is a good one.
Figure {a shows that when one remains far from reso-

loss. For a magnetron delivering 700 W and exciting a 2.5nance, there is excellent agreement between the exact and the
GHz mode in a 1-liter resonant cavity, one has for electrongipproximate solution. Figure(d) shows that when a reso-

a~8.4x10 °/Q. When Q is 1-1¢, a is in the range

nance condition is mél)y/y=1), the agreement is good only

1074-10 2 Because of this, the crudest possible approximafor a short time compared to the time scale of the envelop

tion was performed; it is assumed thats a constant in the
integrations that are in E(28) or Egs.(30). This leads to the
approximate solution

+asint

(e

Qo -
P1:AOCO _t+5
Y
Qo) t
sir{(l——o
Y

2
QO)

—2a

Qo) t
HERC
1__

Y

evolution. In these two cases the approximate solution per-
mits one to predict at least the aspect of the trajectory. It
shows[Egs. (31)] that when the particle is initially at rest,
whenAy=0 (y,=1), P; andQ; result in a beating between
two waves; this explains why trajectories spiral outward and
inward. In this situation, when no resonance condition is
met, it can be shown numerically that, roughly speaking, the
exact trajectories are approached ‘“correctly” by the ap-
proximate solution for a long time, as far as<0.1. When
the resonance condition is met, only the trend of the trajec-
tories can be given whea<10 2. For large values ofy,

and small values o& (Ay>a), the trajectories are close to



0.015

(a)

O exact solution
A approximate solution

0.010

0.005

o 0.000 -

-0.005

-0.010

-0.015 .
0.0 10.0

b
© exact solution ®

4 approximate solution

01

0.4
0.0

50.0 150.0

FIG. 7. (a) Comparison of the results obtained with the exact

equationd Egs.(18)] and the approximate solutidiegs.(31)] in a
case when the resonance condition is never verifigd1, Qy=1.5,

anda=3x10"3. (b) Comparison of the results obtained with the
exact equations and the approximate solution in a case when tl

particle is initially resonant and at rest=3x10"°.

ellipses in theQ,-P, plane, as predicted by Eq&1) (Fig.
8). According to the canonical transformatiofsgs. (16)],
they are almost circles in they plane(Fig. 5).

IIl. ENERGY OF THE PARTICLE

A. Differential equation for the energy

Taking the derivative of Eq.17) with respect to time and
using Egs(30), we obtain

yy=— a[ Aocod o(t) —t+ 6]

—af co§o(t)—o(7)+r—t]dr}. (37
0

This equation, multiplied byly/y—1 and integrated between
0 andt, leads to
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FIG. 8. Trajectory of a charged particle in tQg- P, plane. The
same conditions as in the case described in Fig. 5 are considered.

Qo(y=v0)=———
=—a[Aosir[o(f)—f+ 5]

—af sifo(t)— o(7) + 7—1]dr! . (39)
0

Then Eq.(37) is differentiated with respect to time and Eq.

a8, multiplied by Qy/y—1, is added to it. The resulting

equation is multiplied byyy and integrated between 0 ahd
In this way, the following differential equation for the energy
is derived:

2
Y Iy Ko
2+ =~ Qgy+Ry— —— — =0, 39
Y 4 oY 0 y 72 (39
with
,}/2
RozaAosinb‘JrQSJrQOyO—?o a?, (40)
T'o=200aAssiné+2035y,— Qo3 (41)
and
74
K0=a2A(2)c0525—F070+ROyS—QOy8+ZO. (42)

This result is in good agreement with the one obtained by
Roberts and Buchsbauft]. y can be solved numerically as
a function ofy. Some results are shown in Fig. 9. Equation
(39 describes motion in a one-dimensional potential. It ad-
mits a solution that gives time in terms of a sum of elliptic
integrals of the first and the third tygd1]. The inversion
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FIG. 9. Trajectories in they-y phase space fory,=1,
a=3x10"3, and different values of),.

process, which consist of deriving as a function of time,

does not lead to any practical result. As a consequence, it is

more interesting to study qualitatively the behavionoh its
phase space. Still, the fact that a solution of E39) exists

permits, with the help of Eq430), one to prove a second

time that this problem is integrable.
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B. Phase-space analysis

Equation(39) can also be written

Y2 y?=a?( 72—1)—{aAosin5

+(v— 7o)

SRl

(43

This expression is more tractable in the phase space)(
than Eq.(39).
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FIG. 12. Evolution ofy?)? at low energy wher),=—1.5 and

a=0.1.
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a

FIG. 15. Comparison of the maximum normalized kinetic ener-

gies reached when the particle is initially resonant, and “anti-
resonant” wmar- ¥o=1.

Let us consider the case when the particle is initially non-
resonant and at rest(y,=1 and Qy#1). We set ) o o )
y;=[a2(y2—1)]¥2 and y,=3(y—1)[y+ 1-2Q,] [Figs. and its positive roofw,,,, the k|net|c_ energy(w) oscillates
10(a) and 1@b)]. In Figs. 11a) and 11b), in the casd),>1, Petween these two values. Assuming thats very small
the square of the second quantity is substracted from thed<<1), whichis an experlmentally|r.1terest|.ng situation, then
square of the first. The same procedure can be done whéA(#) has only one real root. Equatidd4) yields
0,<1 (Fig. 12. As y*y? has to be positivey remains in the
finite domain includingy, and oscillates between two values.
This is in good agreement with the fact that E89) cannot
be satisfied by too high a value ¢f

The interesting case when the particle is initially resonan
and at rest is now considerég,=,=1). Settingy=1+p,
Eq. (43) becomes

e~ 2%, (45)

In this situation(y,=Q,=1), Eg. (39) was solved numeri-
f:ally for different values ofa. The maximum value ofy
reached by the particle is compared in Fig. 14 to the one
obtained through Eq45). Very good agreement between the
two results is observed.

_ Pk Another interesting situation is the case when the particle
Y2 y?=pula?(u+2)— T} (44 s initially “antiresonant” and at resty,=1 andQ,=—1).
Then
As u=0, the sign of the third-order polynomial 3

Q(un)=a%(u+2)—u3/4 has to be positive. In any case,
Q(u) has only one real positive root. Three situations are
possible:Q(x) has only one real root whem< /27/2 (Fig.
13); it can have either three real roots or twawith one
double whena= \27/2; asQ(u) is positive betweeq=0

Vy=u| = 2wt @-apr22?|. (49

The third-order  polynomial T(u)=—(u/4)—2u?
+(a?—4)u+2a? has only one positive root whea is a
sufficiently small quantity. In this case, the maximum value

o for the normalized kinetic energy is approximately given by
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FIG. 14. Comparison between the maximum normalized kinetic
energy reached by the particle calculated through(&9).(full line)
and Eq.(45) (full squares and dashed ling€)y=1,=1.

FIG. 16. Value of the magnetic field leading to the maximum
energy for the charged particle versusy,=1.
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x energy are obtained for low values of parametdwhich is

aeary an .experimentally interes?ing situatbomhen the eIectron is

——.y * initially resonant and antiresonant. Finally, an approximate
/ expression is given for the value of the magnetic figl)

for which the maximum energy is reached.
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APPENDIX

When the motion is considered to be nonrelativistic, the

FIG. 17. Maximum possible energy for the particla) versus Jwo components of the equation of motion may be written as
a, when the particle is initially at rest, compared to the one obtaine

when the particle is initially resonant and at rest.J. dv dv
X
m Wz—e(ExﬂLvyBo), m d—tyz—e(Ey—vao),
a2 (A1)
Kmar™ 5" (47 wherev; is a component of the charged particle velocity. In
matrix notation this set of equations reads

A comparison between the maximum valueswobbtained q
through Eqs(45) and(47) is shown in Fig. 15. It points out av_
how important it is to take the magnetic field in the right m dt e(E+eBol-v), (A2)
direction.

When the particle is initially at rest, the maximum energywherev=(v,,vy), J=(,(l) (1,), andE=(E,,Ey). The solu-
is not reached when it is initially resonant. Figure 16 showsdion of this equation can be given in terms of
the values of the parameté&), for which the maximum en-
ergy is reached, for differerd in the range(1x10 %)—0.4. G(t)=exp(ptd), (A3)
An approximate expression fé}, obtained for a third-order
polynomial fit to the data yields with B=—(e/m)By,

~ _ 2 3 e [t
0~1.0205+5.0752— 11.185&7+13.6444°. (48) V(=G0 Vo~ = f Gt-s)-E(sids.  (Ad)
0

Figure 17 shows the corresponding maximum eneygy,

compared to the maximum energy, reached when the par- This equation enables the derivationxoandy by a simple

ticle is initially resonant. guadrature. This points out how simple it is to show that the
problem is integrable in the nonrelativistic limit. In order to
simplify the calculation of the velocity, one can verify that
[12]

V. CONCLUSION G(t)=1 cog Bt) +J sin(B), (A5)
Using the Hamiltonian formalism, we have reduced the

problem of relativistic motion of a charged particle in a con-where | is the matrix identity. Then, at resonantehen

stant homogeneous magnetic field and a transverse rotatirgp=€Bo/M), Eq. (A4) leads easily to the expression for the

electric field to a time-dependent problem with a single deXinetic energy{1,13|

gree of freedom. Noether’'s theorem was used to find a con- 2p2
stant of motion for the system. Then a second integral is 1 , L, 0.5
derived. It gives an alternative way of showing that this Ec_z mjo| 3 Mo eBovod + 2m U (A6)

problem is integrable. The Hamiltonian formalism also gives
insight into the problem in the sense that it enables the deriThe energy of the particle increases indefinitely and does not
vation of a simple approximate solution for the equations ofoscillate as in the relativistic case. The reason is that the
motion, which leads to the prediction of at least the aspect ofyrofrequency is a function of the velocity of the charged
the trajectories. particle when the relativistic equations of motion are consid-
An equation for the energy was obtained and studied irered. The particle cannot remain resonant. This is the main
the phase plane. When the charged particle is initially at restjifference from the relativistic case. Other differences con-
it shows that the energy oscillates between two values. Tra@ern trajectories. For instance, when a particle is initially at
table approximate expressions for the maximum attainableest and resonant it spirals outward indefinitely.
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