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The relativistic motion of a charged particle in a homogeneous time-independent magnetic field and a
transverse circularly polarized homogeneous electric field is reduced to an integrable form. Using canonical
transformations, it is shown that the equations of motion can be derived from a one degree of freedom
time-dependent Hamiltonian that has a first integral. The trajectories and the dynamics of the particle are
studied. Tractable approximate expressions for the maximum kinetic energy are derived in two situations of
experimental interest.@S1063-651X~96!09411-1#

PACS number~s!: 41.75.2i

I. INTRODUCTION

The charged particle motion in a constant homogeneous
magnetic field and a transverse electric field is studied. This
problem has already been explored by other authors@1–3#.
Roberts and Buchsbaum@1# investigated the relativistic mo-
tion of a charged particle in the field of a homogeneous plane
electromagnetic field. For the case when the index of refrac-
tion is unity, they considered a charged particle that starts
from rest in the field of a circularly polarized plane wave
whose frequency is equal to the rest mass cyclotron fre-
quency (eB0/m). They found a ‘‘synchronous’’ solution in
which the particle gains energy indefinitely. This solution
occurs because the particle gains energy parallel to, as well
as perpendicular to, the direction of propagation of the cir-
cularly polarized plane wave. The increase in perpendicular
energy lowers the cyclotron frequency of the charged par-
ticle, while an increase in parallel energy changes the veloc-
ity of the particle, which results in a Doppler shift to a lower
frequency as ‘‘seen’’ by the particle. In this case, the Dop-
pler shift to the lower frequency equals the reduction in the
cyclotron frequency and the particle remains synchronously
in the cyclotron-resonance condition. Hakkenberg and
Weening@2# studied the relativistic equation of motion in a
constant homogeneous magnetic field and a homogeneous
rotating electric field perpendicular to each other. By using
the Lorentz equation in the momentum space they have ex-
pressed exactly the time dependence of the energy of a par-
ticle in terms of elliptic integrals. The maximum energy
reached by the particle is calculated numerically for different
situations. So, in these two papers@1,2#, the integrability of
the system is shown by using Lorentz equation as a force
equation. Jory and Trivelpiece@3# have studied rather the

effects of the spatial variations of the electromagnetic wave
field and the steady magnetic field. These studies were done
to determine the maximum energy gain for a charged particle
in a section of waveguide or a cavity resonator immersed in
a steady magnetic field and an electromagnetic wave as a
function of the various parameters.

In this paper, the case of a circularly polarized standing
wave is considered in order to investigate effects similar to
those that might occur in a cavity resonator in which a low-
density ionized gas has been created. One of the aims of this
work is to bring some enlightenment to the discussions per-
formed in the previous articles by using the Hamiltonian
formalism. Another aim is to derive simple approximate ex-
pressions for the maximum energy the particle can reach.
This gives the upper limit in frequency of the x rays emitted
when an electron immersed in the considered electromag-
netic wave hits a high-Z material target.

The energy of the charged particle is supposed to be low
enough so that dissipation due to radiation can be neglected.
As a consequence, the Hamiltonian formalism can be used.

Two constants of motion are obtained simply by integrat-
ing the equations of Hamilton. Another constant of motion is
derived using Noether’s theorem@4,5#. Canonical transfor-
mations permit one to reduce the problem to a time-
dependent problem with one degree of freedom@6#. The sys-
tem is shown to be integrable by two different methods. One
of them is peculiar to the Hamiltonian formalism; it can be
shown that Liouville’s theorem still applies in this case
@7–9#.

The Hamiltonian formalism gives some insight to the dis-
cussion concerning the numerically calculated trajectories
corresponding to different situations that are shown. It en-
ables one to obtain for them a simple analytic approximate
expression that enables one to predict their aspect. For low
initial energies of the particle and low values of the electric
field the trajectory spirals outward and inward. When the
initial energy is high and the electric field low, the trajecto-
ries become close to circles.

An equation governing the energy of the charged particle
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is derived. It is shown that when the particle is initially at
rest, its energy oscillates between two values. Simple ap-
proximate expressions for the maximum kinetic energy of
the particle are derived when the particle is initially either
resonant or ‘‘antiresonant’’~with the magnetic field in the
opposite direction!. The validity of the expression corre-
sponding to the first situation is discussed by a comparison
with the maximum values of the energy obtained by solving
numerically the exact energy equation. The importance of
taking the magnetic field in the right direction is emphasized.
The condition for which a particle initially at rest reaches the
maximum possible energy is established.

II. HAMILTONIAN STRUCTURE OF MOTION
AND TRAJECTORIES

A. Research of constants of motion: Numerical resolution
of Hamilton’s equations

The constant magnetic fieldB0 is assumed to be along the
z axis and the electric field has the components

Ex5E0cosv0t, Ey5E0sinv0t, Ez50, ~1!

whereE0 andv0 are constants. The following gauge is cho-
sen for the electromagnetic field:

A52SB0

2
y1

E0

v0
sinv0t D êx1SB0

2
x1

E0

v0
cosv0t D êy .

~2!

Because of the Maxwell equations, the electric field and the
total magnetic field cannot be constant along thez axis. Still,
for long wavelengths the additional magnetic field can be
neglected in a region where the electric field is maximum; in
this domain the given treatment is exact.

The motion of the charged particle is assumed to be in the
x-y plane and its relativistic Hamiltonian expressed in mks
units is

H5F S Px2
eE0
v0

sinv0t2
eB0
2

yD 2c2
1S Py1

eE0
v0

cosv0t1
eB0
2

xD 2c21m2c4G1/2, ~3!

where2e andm are the charge and the rest mass of the
particle. The very different physical behavior of the nonrel-
ativistic motion is studied in the Appendix. The Hamilton
equations allows us to readily find two constants of motion

C15Px1
eB0
2

y, C25Py2
eB0
2

x. ~4!

FIG. 1. ~a! Trajectory of a charged particle initially resonant and at rest~g05V051! at x̂05 ŷ050 ~initial values ofx̂ and ŷ! in the x̂- ŷ
plane.a5331023. ~b! x̂ component of the charged particle in the same conditions as those of~a!. ~c! ŷ component of the charged particle
in the same conditions as those of~a!.
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Another constant of motion can be obtained using Noether’s
theorem@4,5#, which says that if the Lagrangian is invariant
under the infinitesimal transformation

t→t1«g~ t,r !,
~5!

r→r1«u~ t,r !,

where« is an infinitesimal, then a constant of motion is

]L

]v
•u1S L2v•

]L

]v Dg, ~6!

whereL52mc2A12v2/c22eA•v is the Lagrangian andv
the velocity of the charged particle. It is simple to show that
the Lagrangian of the system is invariant under the transfor-
mation

t→t2«/v0 , x→x1«y, y→y2«x. ~7!

Therefore, a third first integral is

C35yPx2xPy1H/v0 . ~8!

It can be noticed that the first two constants are canoni-
cally conjugated

HC1 ,
C2

eB0
J 51. ~9!

This last property will be used to reduce the dimension of the
problem by choosing these two constants as new conjugated
momentum and coordinate.

The dimensionless variables and parameters are now in-
troduced

x̂5x
v0

c
, ŷ5y

v0

c
, P̂x,y5

Px,y

mc
, t̂5v0t,

Ĥ5g5
H

mc2
, a5

eE0
mcv0

, V05
eB0
mv0

.

The new Hamiltonian is

Ĥ5F S P̂x2a sint̂2
V0

2
ŷD 2

1S P̂y1a cost̂1
V0

2
x̂D 211G1/2. ~10!

FIG. 2. ~a! Trajectory of a particle in thex̂- ŷ plane in a case when the particle is initially atx̂05 ŷ050 and at rest~g051 andV051.2!
and when the resonance condition~V0/g51! is never reached.~b! x̂ component of the charged particle in the same conditions as those of~a!.
~c! Evolution ofV0/g versus time in the situation of~a!.
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The canonical equations are solved numerically using a
fourth-order Runge-Kutta method. Figures 1~a!, 2~a!, 3~a!,
4~a!, and 5 show different types of trajectories. When the
particle is initially at rest anda small (a!1), it spirals out-
ward and inward~Figs. 1–4!. Different conditions are con-
sidered. Two situations are always compared in each case.
The first is when a resonance condition~v05eB0/mg or
V0/g51! is satisfied~Figs. 1 and 3! and the second is when
one is sufficiently far from any resonance~Figs. 2 and 4!.
When the initial energy is high and the electric field is low
enough, the trajectories become almost circles; Fig. 5 shows
such a trajectory in a case when the resonance condition is
never satisfied. Some analytical insight from an approximate
analytic solution of Hamilton’s equations will be given to
these numerical results in the following.

B. Demonstration of the integrability of the problem

Let us show that this problem can be described from a
single degree of freedom time-dependent Hamiltonian. A
first canonical transformation is introduced:
( x̂,ŷ,P̂x ,P̂y)→( x̃,ỹ,P̃x ,P̃y), given the type-2 generating
function @6#

F25S P̃x2
V0

2
ŷD x̂1 P̃yŷ. ~11!

This yields the canonical transformation

x̂5 x̃, ŷ5 ỹ, P̂x5 P̃x2
V0

2
ỹ, P̂y5 P̃y2

V0

2
x̃. ~12!

In these variablesC1 andC2 become

C̃15 P̃x , C̃25 P̃y2V0x̃. ~13!

Then a second canonical transformation is introduced:
( x̃,ỹ,P̃x ,P̃y)→(Q1 ,Q2 ,P1 ,P2), generated by

F25~P21V0x̃!ỹ1P1S x̃1
P2

V0
D ~14!

and yielding

x̃5Q12
P2

V0
, ỹ5Q22

P1

V0
, P̃x5V0Q2 , P̃y5V0Q1 .

~15!

The resulting transformation, which is a product of the two
transformations, is given by

FIG. 3. ~a! Trajectory of a charged particle initially resonant and
at rest in thex̂- ŷ plane.x̂05 ŷ051 anda5331023. ~b! x̂ compo-
nent of the charged particle in the same conditions as those of~a!.

FIG. 4. ~a! Trajectory of a particle initially at rest and nonreso-
nant~V051.2!. The initial position is the same as in the case of Fig.
3~a!. ~b! x̂ component of the charged particle in the same conditions
as those of~a!.
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x̂5Q12
P2

V0
,

ŷ5Q22
P1

V0
,

~16!
P̂x5

1
2 ~V0Q21P1!,

P̂y5
1
2 ~V0Q11P2!.

In these variables, the Hamiltonian is

H5@~P12a sint̂ !21~V0Q11a cost̂ !211#1/2. ~17!

As expected,P2 andQ2 are cyclic variables. The Hamil-
tonian depends on time and has one degree of freedom. The
new equations of Hamilton are

Ṗ152
V0

g
~V0Q11acos t̂ !, Q̇15

1

g
~P12asin t̂ !.

~18!

The constantC3 becomes

I5H2
P1
2

2V0
2

V0

2
Q1
2. ~19!

The formal inversion ofI with respect toP1 provides

P15G~Q1 ,I , t̂ !, ~20!

whereG is the reciprocal function ofI . Introducing one
equation of the Hamilton, we get

Q̇15h~Q1 ,I , t̂ !, ~21!

which can be considered as a first-order differential equation
with parameterI . In order to integrate Eq.~21!, we look for
an integrating factora(Q1 ,I , t̂) satisfying the equation

a t1aQ1
h1ahQ1

50, ~22!

where subscripts stand for partial derivatives. One can show
that a solution to Eq.~22! is @7,8#

a5GI~Q1 ,I , t̂ !5@ I P1~Q1 ,P1 , t̂ !#
21, ~23!

whereGI5]G/]I and I P15]I /]P1 . Then a second first in-
tegral in terms of (Q1 ,I , t̂) can be found for the one degree
of freedom system. This integral has to satisfy

JQ1
~Q1 ,I , t̂ !5GI~Q1 ,I , t̂ !,

~24!
Jt̂~Q1 ,I , t̂ !52GI~Q1 ,I , t̂ !h~Q1 ,I , t̂ !.

Integration leads to

J~Q1 ,I , t̂ !5E
0

Q1 dQ18

I P1„Q18 ;P15G~Q18 ,I , t̂ !; t̂…

2E
0

t̂ HP1
„0;P15G~0,I , t̂8!; t̂8…

I P1„0;P15G~0,I , t̂8!; t̂8…
dt̂8. ~25!

Equation~25! shows thatQ1 can be derived formally as a
function of time. Consequently, our system is integrable.
Thus Liouville’s theorem still holds@7,8# in the case of a
one-dimensional time-dependent problem.

Poincare´ maps were performed, drawing one point each
time t̂50 mod~2p! ~Fig. 6! @6#. Many initial conditions were
tried. They always yielded smooth curves, which is in good
agreement with the fact that the system is integrable.

C. Solution of the equations of Hamilton as a function
of the particle energy: Approximate solution

Introducing the variables

Q̄15Q11~a/V0!cost̂, P̄15P12a sint̂ ~26!

FIG. 5. Trajectory of an electron with a high initial energy in the
x̂- ŷ plane~g054.57!. V052 anda5331023.

FIG. 6. Surface of section plots for some trajectories when
g05V051 anda5331023.
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and the complex quantityZ5 P̄11 iV0Q̄1 , the equations of
Hamilton @Eqs.~18!# are equivalent to

Ż5
iV0Z

A11uZu2
2a exp~ i t̂ !, ~27!

which is the equation of a nonlinear oscillator submitted to
an external force. The solution of this equation is

Z5A0expi @s~ t̂ !1d#2aE
0

t̂
expi @s~ t̂ !2s~t!1t#dt,

~28!

with

s~ t̂ !5V0E
0

t̂
dt g21~t!. ~29!

A0 andd are real constants. Then

P15A0cos@s~ t̂ !1d#1a sint̂

2aE
0

t̂
cos@s~ t̂ !2s~t!1t#dt,

~30!

Q15
A0

V0
sin@s~ t̂ !1d#2

a

V0
cost̂

2
a

V0
E
0

t̂
sin@s~ t̂ !2s~t!1t#dt.

The quantitiesA0 and d are determined so that att̂50,
A 0

25g 0
2215 p̂ x0

2 1 p̂ y0
2 and tand5p̂y0/ p̂x0 ~p̂5p/mc andp

is the momentum of the particle!. The subscript 0 appended
to variablesg andp refers to their initial value.

Our numerical results show that, whena is small and
wheng0 is close to unity,g varies very little during a gyro-
period (2pġ/V0!1). It must be pointed out that consider-
ing a as a small quantity is experimentally realistic, espe-
cially for low-Q cavities. In any case,a is given by
a5(e/mc)(QP/v 0

3«0V)
1/2, where«0 is the permittivity of

free space,V is the volume of the cavity, andP is its power
loss. For a magnetron delivering 700 W and exciting a 2.5-
GHz mode in a 1-liter resonant cavity, one has for electrons
a'8.431025AQ. When Q is 1–104, a is in the range
1024–1022. Because of this, the crudest possible approxima-
tion was performed; it is assumed thatg is a constant in the
integrations that are in Eq.~28! or Eqs.~30!. This leads to the
approximate solution

P15A0cosS V0

g
t̂1d D1a sint̂

22a

sinF S 12
V0

g D t̂

2G
S 12

V0

g D cosF S 11
V0

g D t̂

2G , ~31!

Q15
A0

V0
sinS V0

g
t̂1d D2

a

V0
cost̂

2
2a

V0

sinF S 12
V0

g D t̂

2G
S 12

V0

g D sinF S 11
V0

g D t̂

2G .
This approximate solution can also be obtained by applying
the multiple-time-scale method to Eq.~27! @10#. The number
of time variables is extended from one variablet̂ to three
independent variablest05 t̂, t15« t̂, and t25«2t̂, where
«5a/V0 is the small parameter.Z is expanded in« accord-
ing to

Z5Z~0!1«Z~1!1g«2Z~2!. ~32!

We treatt0, t1, andt2 as independent variables and expand
the time derivative as

d

dt̂
5

]

]t0
1«

]

]t1
1«2

]

]t2
. ~33!

g is assumed to be a slowly varying quantity. One has to
suppose it is a function oft2 only. We find, forZ(0),

Z~0!5Z̄~t1 ,t2!expF i V0

g~t2!
t0G . ~34!

In order to have a uniformly valid solution forZ(1), we use
the freedom to remove any secular behavior to set

]Z̄

]t1
50. ~35!

The solution correct to order« can be written

Z5Z0expS i V0

g
t̂ D1 i

ag

~g2V0!
Fexp~ i t̂ !2expS i V0

g
t̂ D G ,
~36!

whereZ0 is a complex constant. SettingZ05A0exp(id), Eq.
~36! leads to the derivation of Eqs.~31! again. This second
way to derive Eqs.~31! indicates how slow the variation ofg
must be so that the approximate solution is a good one.

Figure 7~a! shows that when one remains far from reso-
nance, there is excellent agreement between the exact and the
approximate solution. Figure 7~b! shows that when a reso-
nance condition is met~V0/g51!, the agreement is good only
for a short time compared to the time scale of the envelop
evolution. In these two cases the approximate solution per-
mits one to predict at least the aspect of the trajectory. It
shows@Eqs. ~31!# that when the particle is initially at rest,
whenA050 ~g051!, P1 andQ1 result in a beating between
two waves; this explains why trajectories spiral outward and
inward. In this situation, when no resonance condition is
met, it can be shown numerically that, roughly speaking, the
exact trajectories are approached ‘‘correctly’’ by the ap-
proximate solution for a long time, as far asa,0.1. When
the resonance condition is met, only the trend of the trajec-
tories can be given whena,1022. For large values ofg0
and small values ofa (A0@a), the trajectories are close to
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ellipses in theQ1-P1 plane, as predicted by Eqs.~31! ~Fig.
8!. According to the canonical transformations@Eqs. ~16!#,
they are almost circles in thex̂- ŷ plane~Fig. 5!.

III. ENERGY OF THE PARTICLE

A. Differential equation for the energy

Taking the derivative of Eq.~17! with respect to time and
using Eqs.~30!, we obtain

gġ52aHA0cos@s~ t̂ !2 t̂1d#

2aE
0

t̂
cos@s~ t̂ !2s~t!1t2 t̂#dtJ . ~37!

This equation, multiplied byV0/g21 and integrated between
0 and t̂, leads to

V0~g2g0!2
~g22g0

2!

2
2aA0sind

52aHA0sin@s~ t̂ !2 t̂1d#

2aE
0

t̂
sin@s~ t̂ !2s~t!1t2 t̂#dtJ . ~38!

Then Eq.~37! is differentiated with respect to time and Eq.
~38!, multiplied by V0/g21, is added to it. The resulting
equation is multiplied bygġ and integrated between 0 andt̂.
In this way, the following differential equation for the energy
is derived:

ġ21
g2

4
2V0g1R02

G0

g
2
K0

g2 50, ~39!

with

R05aA0sind1V0
21V0g02

g0
2

2
2a2, ~40!

G052V0aA0sind12V0
2g02V0g0

2, ~41!

and

K05a2A0
2cos2d2G0g01R0g0

22V0g0
31

g0
4

4
. ~42!

This result is in good agreement with the one obtained by
Roberts and Buchsbaum@1#. ġ can be solved numerically as
a function ofg. Some results are shown in Fig. 9. Equation
~39! describes motion in a one-dimensional potential. It ad-
mits a solution that gives time in terms of a sum of elliptic
integrals of the first and the third type@11#. The inversion

FIG. 7. ~a! Comparison of the results obtained with the exact
equations@Eqs.~18!# and the approximate solution@Eqs.~31!# in a
case when the resonance condition is never verified.g051,V051.5,
anda5331023. ~b! Comparison of the results obtained with the
exact equations and the approximate solution in a case when the
particle is initially resonant and at rest.a5331023.

FIG. 8. Trajectory of a charged particle in theQ1-P1 plane. The
same conditions as in the case described in Fig. 5 are considered.
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process, which consist of derivingg as a function of time,
does not lead to any practical result. As a consequence, it is
more interesting to study qualitatively the behavior ofg in its
phase space. Still, the fact that a solution of Eq.~39! exists
permits, with the help of Eqs.~30!, one to prove a second
time that this problem is integrable.

B. Phase-space analysis

Equation~39! can also be written

g2ġ25a2~g221!2H aA0sind
1~g2g0!F S g1g0

2 D2V0G J 2. ~43!

This expression is more tractable in the phase space (g,ġ)
than Eq.~39!.

FIG. 9. Trajectories in theġ-g phase space forg051,
a5331023, and different values ofV0.

FIG. 10. Functionsy1 and y2 versusg for ~a! V051.5 and
a50.1 and~b! V0521.5 anda50.1.

FIG. 11. g2ġ2 versusg as the result of the addition ofy 1
2 and

2y 2
2. V051.5 anda50.1. ~b! Magnification of~a! at low energy.

FIG. 12. Evolution ofg2ġ2 at low energy whenV0521.5 and
a50.1.
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Let us consider the case when the particle is initially non-
resonant and at rest~g051 and V0Þ1!. We set
y15[a2(g221)]1/2 and y25

1
2 (g21)[g1122V0] @Figs.

10~a! and 10~b!#. In Figs. 11~a! and 11~b!, in the caseV0.1,
the square of the second quantity is substracted from the
square of the first. The same procedure can be done when
V0,1 ~Fig. 12!. As g2ġ2 has to be positive,g remains in the
finite domain includingg0 and oscillates between two values.
This is in good agreement with the fact that Eq.~39! cannot
be satisfied by too high a value ofg.

The interesting case when the particle is initially resonant
and at rest is now considered~g05V051!. Settingg511m,
Eq. ~43! becomes

g2ġ25mFa2~m12!2
m3

4 G . ~44!

As m>0, the sign of the third-order polynomial
Q(m)5a2(m12)2m3/4 has to be positive. In any case,
Q(m) has only one real positive root. Three situations are
possible:Q(m) has only one real root whena,A27/2 ~Fig.
13!; it can have either three real roots or two~with one
double! whena>A27/2; asQ(m) is positive betweenm50

and its positive rootmmr , the kinetic energy~m! oscillates
between these two values. Assuming thata is very small
(a!1), which is an experimentally interesting situation, then
Q(m) has only one real root. Equation~44! yields

mmr'2a2/3. ~45!

In this situation~g05V051!, Eq. ~39! was solved numeri-
cally for different values ofa. The maximum value ofg
reached by the particle is compared in Fig. 14 to the one
obtained through Eq.~45!. Very good agreement between the
two results is observed.

Another interesting situation is the case when the particle
is initially ‘‘antiresonant’’ and at rest~g051 andV0521!.
Then

g2ġ25mS 2
m3

4
22m21~a224!m12a2D . ~46!

The third-order polynomial T(m)52(m3/4)22m2

1(a224)m12a2 has only one positive root whena is a
sufficiently small quantity. In this case, the maximum value
for the normalized kinetic energy is approximately given by

FIG. 13.Q(m) versusm whena5331023 ~thick solid line!.

FIG. 14. Comparison between the maximum normalized kinetic
energy reached by the particle calculated through Eq.~39! ~full line!
and Eq.~45! ~full squares and dashed line!. V05g051.

FIG. 15. Comparison of the maximum normalized kinetic ener-
gies reached when the particle is initially resonantmmr and ‘‘anti-
resonant’’mmar . g051.

FIG. 16. Value of the magnetic field leading to the maximum
energy for the charged particle versusa. g051.
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mmar'
a2

2
. ~47!

A comparison between the maximum values ofm obtained
through Eqs.~45! and~47! is shown in Fig. 15. It points out
how important it is to take the magnetic field in the right
direction.

When the particle is initially at rest, the maximum energy
is not reached when it is initially resonant. Figure 16 shows
the values of the parameterV0 for which the maximum en-
ergy is reached, for differenta in the range~131023!–0.4.
An approximate expression forV0 obtained for a third-order
polynomial fit to the data yields

V0'1.020515.0753a211.1858a2113.6444a3. ~48!

Figure 17 shows the corresponding maximum energygM ,
compared to the maximum energygm reached when the par-
ticle is initially resonant.

IV. CONCLUSION

Using the Hamiltonian formalism, we have reduced the
problem of relativistic motion of a charged particle in a con-
stant homogeneous magnetic field and a transverse rotating
electric field to a time-dependent problem with a single de-
gree of freedom. Noether’s theorem was used to find a con-
stant of motion for the system. Then a second integral is
derived. It gives an alternative way of showing that this
problem is integrable. The Hamiltonian formalism also gives
insight into the problem in the sense that it enables the deri-
vation of a simple approximate solution for the equations of
motion, which leads to the prediction of at least the aspect of
the trajectories.

An equation for the energy was obtained and studied in
the phase plane. When the charged particle is initially at rest,
it shows that the energy oscillates between two values. Trac-
table approximate expressions for the maximum attainable

energy are obtained for low values of parametera ~which is
an experimentally interesting situation!, when the electron is
initially resonant and antiresonant. Finally, an approximate
expression is given for the value of the magnetic field~V0!
for which the maximum energy is reached.
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APPENDIX

When the motion is considered to be nonrelativistic, the
two components of the equation of motion may be written as

m
dvx
dt

52e~Ex1vyB0!, m
dvy
dt

52e~Ey2vxB0!,

~A1!

wherev i is a component of the charged particle velocity. In
matrix notation this set of equations reads

m
dv

dt
52e~E1eB0J•v!, ~A2!

wherev5(vx ,vy), J5(21
0

0
1!, andE5(Ex ,Ey). The solu-

tion of this equation can be given in terms of

G~ t !5exp~btJ!, ~A3!

with b52(e/m)B0 ,

v~ t !5G~ t !•v02
e

m E
0

t

G~ t2s!•E~s!ds. ~A4!

This equation enables the derivation ofx andy by a simple
quadrature. This points out how simple it is to show that the
problem is integrable in the nonrelativistic limit. In order to
simplify the calculation of the velocity, one can verify that
@12#

G~ t !5I cos~bt !1J sin~bt !, ~A5!

where I is the matrix identity. Then, at resonance~when
v05eB0/m!, Eq. ~A4! leads easily to the expression for the
kinetic energy@1,13#

Ec5
1

2
muvu25

1

2
mv0

22eE0v0xt1
e2E0

2

2m
t2. ~A6!

The energy of the particle increases indefinitely and does not
oscillate as in the relativistic case. The reason is that the
gyrofrequency is a function of the velocity of the charged
particle when the relativistic equations of motion are consid-
ered. The particle cannot remain resonant. This is the main
difference from the relativistic case. Other differences con-
cern trajectories. For instance, when a particle is initially at
rest and resonant it spirals outward indefinitely.

FIG. 17. Maximum possible energy for the particle (gM) versus
a, when the particle is initially at rest, compared to the one obtained
when the particle is initially resonant and at rest (gm).
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